DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

POWER SYSTEM SIMULATION LABORATORY

Equipments Available In The Lab

Sl. No	EQUIPMENTS		
1	Desktop		
2	Printer		
3	Server		
4	Software: ETAP Power system simulation software		
5	Compilers: C/ C++		
6	Air Conditioner LG		
7	LAN switch		

COURSES OFFERED

Sl. No	Odd Sem (Course code & Name)	Class	Even Sem (Course code & Name)	Class
1	EE3512-Control & Instrumentation Laboratory	III Year EEE	EE3611-Power System Laboratory	III Year EEE
2	EE8711-Power System Simulation Laboratory	IV Year EEE		

2023-2024 ODD SEMESTER

EE3512- CONTROL AND INSTRUMENTATION LABORATORY

COURSE OBJECTIVES:

- To make the students familiarize with various representations of systems.
- To make the students analyze the stability of linear systems in the time domain and frequency domain.
- To make the students design compensator based on the time and frequency domain Specifications.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

- To develop linear models mainly state variable model and transfer function model
- To make the students to design a complete closed loop control system for the physical systems.

COURSE OUTCOMES:

At the end of this course, the students will demonstrate the ability

CO1: To model and analyze simple physical systems and simulate the performance in analog and digital platform.

CO2: To design and implement simple controllers in standard forms.

CO3: To design compensators based on time and frequency domain specifications.

CO4: To design a complete closed control loop and evaluate its performance for simple physical systems.

CO5: To analyze the stability of a physical system in both continuous and discrete domains.

LIST OF EXPERIMENTS:

- 1. Analog (op amp based) simulation of linear differential equations.
- 2. Numerical Simulation of given nonlinear differential equations.
- 3. Real time simulation of differential equations.
- 4. Mathematical modeling and simulation of physical systems in at least two fields. Mechanical Electrical Chemical process
- 5. System Identification through process reaction curve.
- 6. Stability analysis using Pole zero maps and Routh Hurwitz Criterion in simulation platform.
- 7. Root Locus based analysis in simulation platform.
- 8. Determination of transfer function of a physical system using frequency response and Bode's asymptotes.
- 9. Design of Lag, lead compensators and evaluation of closed loop performance.
- 10. Design of PID controllers and evaluation of closed loop performance.
- 11. Discretization of continuous system and effect of sampling.
- 12. Test of controllability and observability in continuous and discrete domain in simulation platform. 13. State feedback and state observer design and evaluation of closed loop performance.
- 14. Mini Project 1: Simulation of complete closed loop control systems including sensor and actuator dynamics.
- 15. Mini Project 2: Demonstration of a closed loop system in hardware

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE8711- POWER SYSTEM SIMULATION LABORATORY

OBJECTIVES:

• To provide better understanding of power system analysis through digital simulation.

OUTCOMES:

- Ability to understand power system planning and operational studies.
- Ability to acquire knowledge on Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
- Ability to analyze the power flow using GS and NR method
- Ability to find Symmetric and Unsymmetrical fault
- Ability to understand the economic dispatch.
- Ability to analyze the electromagnetic transients.

LIST OF EXPERIMENTS

- 1. Computation of Transmission Line Parameters
- 2. Formation of Bus Admittance and Impedance Matrices and Solution of Networks
- 3. Power Flow Analysis using Gauss-Seidel Method
- 4. Power Flow Analysis using Newton Raphson Method
- 5. Symmetric and unsymmetrical fault analysis
- 6. Transient stability analysis of SMIB System
- 7. Economic Dispatch in Power Systems
- 8. Load Frequency Dynamics of Single- Area and Two-Area Power Systems
- 9. State estimation: Weighted least square estimation
- 10. Electromagnetic Transients in Power Systems: Transmission Line Energization

2023-2024 EVEN SEMESTER

EE3611 - POWER SYSTEM LABORATORY

COURSE OBJECTIVES:

1. To provide a better understanding of modelling of transmission lines in impedance and admittance forms.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

- 2. To apply iterative techniques for power flow analysis and to carry out short circuit and stability studies on power system.
- 3 .To analyze the load frequency and voltage controls.
- 4. To analyze optimal dispatch of generators and perform state estimation.
- 5. To understand the operation of relays, characteristics, and applications.

COURSE OUTCOMES:

On the successful completion of the laboratory, students will be able to:

- CO1: Model and analyze the performance of the transmission lines.
- CO2: Perform power flow, short circuit, and stability analysis for any power system network.
- CO3: Understand, design, and analyze the load frequency control mechanism.
- CO4: Perform optimal scheduling of generators and compute the state of the power system.
- CO5: Understand, analyze, and apply the relays for power system protection.

LIST OF EXPERIMENTS:

- 1. Computation and modelling of transmission Lines.
- 2. Formation of Bus Admittance and Impedance Matrices.
- 3. Power Flow Analysis Using Gauss-Seidel Method.
- 4. Power Flow Analysis Using Newton Raphson Method.
- 5. Symmetric and Unsymmetrical Fault Analysis.
- 6. Transient Stability Analysis of SMIB System.
- 7. Load Frequency Dynamics of Single- Area and Two-Area Power Systems.
- 8. Economic Dispatch in Power Systems.
- 9. State estimation: Weighted least square estimation.
- 10. Performance analysis of over current relay.
- 11. Performance analysis of impedance relay.
- 12. Testing of CT, PT, and Insulator string.
- 13. Relay Coordination in Radial Feeder Protection Scheme.